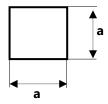


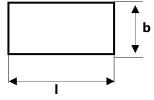
# Formelsammlung

# Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe

Erstellt von Dipl.-Ing. (FH) Wolfgang Hetterich, mit Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, Thomas Stiller

## Inhalt

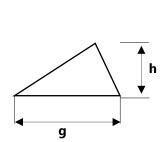

| Flächenberechnungen2                                                         |
|------------------------------------------------------------------------------|
| Quadrat, Rechteck2                                                           |
| Dreieck, Trapez2                                                             |
| Satz des Pythagoras3                                                         |
| Heronische Formel3                                                           |
| Kreis, Kreisring4                                                            |
| Volumenberechnungen5                                                         |
| Würfel, Quader5                                                              |
| Zylinder5                                                                    |
| Prisma5                                                                      |
| Pyramide, Kegel, schräge und spitze Körper6                                  |
| Kegelstumpf, Pyramidenstumpf6                                                |
| Kugel7                                                                       |
| Allgemeine Mechanik8                                                         |
| Geschwindigkeit8                                                             |
| Dichte8                                                                      |
| Gewichtskraft8                                                               |
| Druck8                                                                       |
| Schweredruck (z.B. bei einer Wassersäule in einem Gefäß)9                    |
| Druckausbreitung (z.B. Hydraulische Presse)9                                 |
| Gesetz von Boyle-Mariotte (Druck in Gasen)9                                  |
| Vereinfachte Gleichung für Gasfüllungen oder Gasentnahme bei Druckbehältern9 |
| Auftrieb in Flüssigkeiten10                                                  |
| Volumenstrom - Durchfluss - Massenstrom 10                                   |
| Mechanische Arbeit11                                                         |
| Mechanische Leistung                                                         |

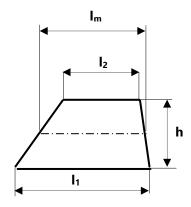

|   | Pumpenleistung                                               | 11   |
|---|--------------------------------------------------------------|------|
|   | Gesamtförderhöhe H                                           | 12   |
|   | Pumpenwirkungsgrad                                           | 12   |
|   | Gesamtwirkungsgrad                                           | 12   |
| E | lektrotechnik                                                | . 13 |
|   | Ohmsches Gesetz                                              | 13   |
|   | Elektrische Leistung                                         | 13   |
|   | Elektrische Arbeit                                           | 13   |
|   | Stromkosten                                                  | 13   |
| / | Värmelehre                                                   | . 14 |
|   | Wärmemenge                                                   | 14   |
|   | Wärmeenergiewirkungsgrad (z. B. einer Heizung)               | 14   |
|   | Gesamtwirkungsgrad                                           | 14   |
|   | Brennstoffmengenermittlung für Warmwasserbereitung           | 14   |
|   | Heizkostenermittlung für die<br>Warmwasserbereitung          |      |
|   | Mischwasserberechnungen                                      |      |
| 3 | äderspezifisches Fachrechnen                                 |      |
|   | Nennbelastung nach DIN 19643                                 |      |
|   | Volumenstrom nach DIN 19643                                  | 16   |
|   | Umwälzperiode                                                |      |
|   | Mindestvolumen der Warmsprudelbecken in kombinierter Nutzung |      |
|   | Dosierleistung von Chlor sowie Chlorgasbedarfsberechnung     | 17   |
|   |                                                              |      |
|   |                                                              |      |



## Flächenberechnungen

## **Quadrat, Rechteck**



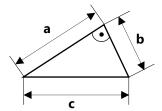

$$A = 1 \bullet b$$

| A = Flächein   | cm <sup>2</sup> |
|----------------|-----------------|
| a, l = Längein | cm              |
| b = Breitein   | cm              |

## Dreieck, Trapez






$$A = \frac{g \bullet h}{2}$$

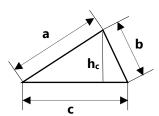
$$A = 1_m \bullet h = \frac{1_1 + 1_2}{2} \bullet h$$



## Satz des Pythagoras

Kann zur Berechnung einer Seitenlänge in rechtwinkligen Dreiecken verwendet werden.




$$a^2 + b^2 = c^2$$

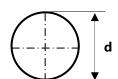
a, b = Katheten.....in cm c = Hypotenuse.....in cm

Die Hypotenuse (Seite c) ist die dem rechten Winkel gegenüberliegende und damit auch die längste Seite im Dreieck.

#### **Heronische Formel**

Kann zur Berechnung der Fläche eines beliebigen Dreiecks verwendet werden, wenn alle drei Seitenlängen und damit auch der Umfang bekannt sind.

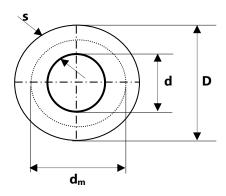



$$A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)}$$

$$\begin{bmatrix} 3 & - \\ 2 \end{bmatrix}$$

$$h_c = \frac{2 \bullet a}{c}$$




## Kreis, Kreisring



$$A = r^2 \bullet \pi$$

$$A = d^2 \bullet \frac{\pi}{4}$$

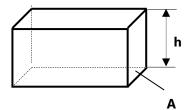
$$d = 2 \bullet r$$



$$A = D^{2} \bullet \frac{\pi}{4} - d^{2} \bullet \frac{\pi}{4} \text{ oder}$$

$$A = d_{m}^{2} \bullet \pi \bullet s$$

$$A = d_m^2 \bullet \pi \bullet s$$

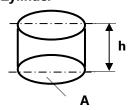

| A = Fläche                         | in cm <sup>2</sup> |
|------------------------------------|--------------------|
| r = Radius                         | in cm              |
| d, D, d <sub>m</sub> = Durchmesser | in cm              |
| s = Ringbreite                     | in cm              |



# Volumenberechnungen

## Würfel, Quader

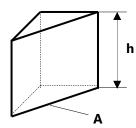


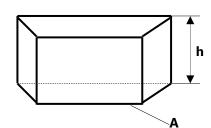



$$V = A_{Quadrat} \bullet h$$

$$V = A_{Rechteck} \bullet h$$

| V = Volumen | in cm <sup>3</sup> |
|-------------|--------------------|
| A = Fläche  | in cm²             |
| h = Höhe    | in cm              |


## Zylinder




$$V = A_{Kreis} \bullet h$$

| V = Volumen | in cm³ |
|-------------|--------|
| A = Fläche  | in cm² |
| h = Höhe    | in cm  |

## Prisma

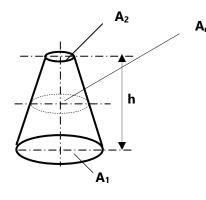


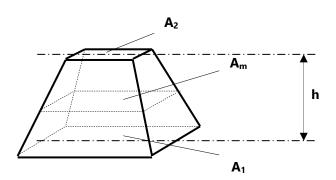



$$V = A_{\text{Dreieck}} \bullet h$$

$$V = A_{Trapez} \bullet h$$

| V = Volumen | in cm³ |
|-------------|--------|
| A = Fläche  | in cm² |
| h = Höhe    | in cm  |



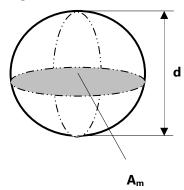


## Pyramide, Kegel, schräge und spitze Körper



Grundformel 
$$V = \frac{1}{3} A \bullet h$$

## **Kegelstumpf, Pyramidenstumpf**






Überschlagsformel (nur anwenden bis  $A_1 \le 2A_2$ )

$$V = \frac{h}{3} \bullet (A_1 + A_2 + \sqrt{A_1 \bullet A_2}) \quad A_m = 1_m \bullet b_m \quad V \approx A_m \bullet h$$



# Kugel



$$A_{m} = d^{2} \bullet \frac{\pi}{2}$$

$$V = \frac{\pi \bullet d^{3}}{6}$$

| V = Volumen             | in cn | n³ |
|-------------------------|-------|----|
| A <sub>m</sub> = Fläche | in cn | n² |
| d - Durchmasser         | in cn | n  |



## **Allgemeine Mechanik**

## Geschwindigkeit

Unter Geschwindigkeit v eines Körpers versteht man den von ihm zurückgelegten Weg s pro dafür benötigte Zeit t.

$$v = \frac{s}{t}$$

v = Geschwindigkeit.....in m/s s = Weg......in m t = Zeit......in s

## Dichte

Bezieht man die Masse (Stoffmenge) eines Körpers auf dessen Volumen, so erhält man die <u>Dichte</u>, sie wird mit dem griechischen Buchstaben  $\rho$  (rho) bezeichnet. Die Einheit der Dichte ist kg/dm<sup>3</sup>.

$$\rho = \frac{m}{V}$$

#### Gewichtskraft

Die Gewichtskraft (auch Gewicht oder Schwere genannt) ist die auf einen Körper einwirkende Kraft, die durch das Schwerefeld der Erde erzeugt wird. Dabei werden alle Körper von der Erde mit der Erdbeschleunigung von 9,81 m/s² angezogen. Gemessen wird die Gewichtskraft in der Einheit Newton (N).

$$F_G = m \bullet g$$

#### **Druck**

Der Druck ist die Kraft, die auf eine bestimmte Fläche einwirkt. Die Einheit des Druckes ist N/cm². In der angewandten Technik wird aber oft die Einheit bar (1 bar = 10 N/cm²) verwendet.

$$p = \frac{F}{A}$$



#### Schweredruck (z.B. bei einer Wassersäule in einem Gefäß)

Der Schweredruck ist der Druck in einer bestimmten Tiefe, der durch die eigene Masse der darüberstehenden Flüssigkeit oder des darüberstehenden Gases hervorgerufen wird. Die Einheit des Druckes ist  $N/cm^2$ . In der angewandten Technik wird aber oft die Einheit bar (1 bar = 10  $N/cm^2$ ) verwendet.

$$p = \rho \bullet g \bullet h$$

| p = (Schwere) Druck            | in N/cm² |
|--------------------------------|----------|
| ρ = Dichte                     |          |
| g = Erdbeschleunigung          | in m/s²  |
| h = Höhe der Flüssigkeitssäule | in cm    |

#### **Druckausbreitung (z.B. Hydraulische Presse)**

Der Druckkolben wird von Punkt  $P_1$  mit einem Druck p bis zu Punkt  $P_2$  verschoben und legt die Strecke  $s_1$  zurück. Hierbei wird das Flüssigkeitsvolumen  $V_1$  in den Arbeitskolben verdrängt. Hierdurch wird der Arbeitskolben um das gleiche Volumen  $V_2$  von Punkt  $P_3$  nach Punkt  $P_4$  verschoben und legt dabei die Wegstrecke  $s_2$  zurück.

$$V_1 = V_2 \implies A_1 \bullet S_1 = A_2 \bullet S_2$$

$$V_1$$
;  $V_2$  = Volumen der Kolben ......in cm<sup>3</sup>  
 $A_1$ ;  $A_2$  = Fläche der Kolben ......in cm<sup>2</sup>  
 $s_1$ ;  $s_2$  = Weg der Kolben ......in cm

$$\frac{F_1}{F_2} = \frac{A_1}{A_2}$$

$$F_1$$
;  $F_2$  = Kolbenkräfte ......in N  
 $A_1$ ;  $A_2$  = Fläche der Kolben .....in cm<sup>2</sup>

#### Gesetz von Boyle-Mariotte (Druck in Gasen)

Das Produkt aus dem Volumen V und dem Druck p einer abgeschlossenen Gasmenge erweist sich bei gleichbleibender Temperatur als konstant.

$$p_1 \bullet V_1 = p_2 \bullet V_2$$

```
p_1; p_2 = Druck einer abgeschlossenen Gasmenge.....in N/cm² V_1; V_2 = Volumen der abgeschlossenen Gasmenge.....in cm³
```

## Vereinfachte Gleichung für Gasfüllungen oder Gasentnahme bei Druckbehältern

Wird die Gasmenge eines Raumes immer um die Gleiche Menge des Rauminhalts vermehrt, steigt der Druck in diesem Raum jeweils um 1 bar

$$Q = V \bullet p$$





#### Auftrieb in Flüssigkeiten

Ein vollständig in eine Flüssigkeit eingetauchter Körper  $V_K$  erfährt eine Auftriebskraft  $F_{A}$ , die seiner Gewichtskraft entgegenwirkt. Der eingetauchte Körper verdrängt hierbei ein entsprechendes Flüssigkeitsvolumen.

 $F_A = \rho_{F1} \bullet g \bullet V_{vF1}$  (bei einem vollständig eingetauchten Körper:  $V_K = V_{vF1}$ )

| F <sub>A</sub> = Auftriebskraft                    | N         |
|----------------------------------------------------|-----------|
| $\rho_{FI}$ = Dichte der Flüssigkeit               | in kg/dm³ |
| g = Erdbeschleunigung                              | _         |
| $V_K$ = Volumen des eingetauchten Körpers          |           |
| V <sub>vFl</sub> = Verdrängtes Flüssigkeitsvolumen |           |

Die Auftriebskraft entspricht demnach der Gewichtskraft des verdrängten Flüssigkeitsvolumens.

$$\textbf{F}_{_{\!\!M}} \; = \; \textbf{F}_{_{\!\!G-vFl}} \qquad \quad \boldsymbol{\rightarrow} \qquad \quad \boldsymbol{\rho}_{_{\!\!Fl}} \; \bullet \; \textbf{g} \; \bullet \; \textbf{V}_{_{\!\!K}} \; = \; \textbf{m}_{_{\!\!vFl}} \; \bullet \; \textbf{g}$$

$$F_{G-vFL}$$
 = Gewichtskraft des verdrängen Flüssigkeitsvolumens.....in N [1N = 1 kgm/s<sup>2</sup>]  $m_{vFl}$  = Masse des verdrängten Flüssigkeitsvolumens.....in kg

Die Differenz aus der Auftriebskraft  $F_A$  des Körpers sowie dessen Gewichtskraft  $F_{G-K}$  ergibt die Belastungskraft  $F_B$  des Auftriebskörpers. Dadurch können schwimmende Körper zusätzliche Lasten aufnehmen oder durch die Kräfte in die Flüssigkeit gedrückt werden.

$$F_B = F_A - F_{G-K}$$

$$F_B$$
 = Belastungskraft .....in N [1N = 1 kgm/s<sup>2</sup>]

Ein Körper taucht so tief in eine Flüssigkeit ein, bis die eigene Gewichtskraft der Gewichtskraft des durch ihn verdrängten Flüssigkeitsvolumens entspricht. Der Körper schwimmt auf der Flüssigkeit und taucht nur teilweise in die Flüssigkeit ein.

#### **Volumenstrom - Durchfluss - Massenstrom**

Unter Volumenstrom Q versteht man das Volumen V eines Mediums wie z.B. Wasser, das sich während einer bestimmten Zeiteinheit t durch einen Querschnitt A (z. B. einer Rohrleitung) bewegt.

$$Q = \frac{V}{t}$$

$$Q = A \bullet v$$



$$m' = \frac{m}{t}$$

| m' = Massenstrom | in | kg/h |
|------------------|----|------|
| m = Masse        | in | kg   |
| t = Zeit         | in | h    |

#### Mechanische Arbeit

Die Mechanische Arbeit W ist gleich dem Produkt aus dem zurückgelegten Weg und der Kraft. Die Einheit der Mechanischen Arbeit ist Nm = J.

$$W = F \bullet s$$

| W = Mechanische Arbeit | in Nm = J |
|------------------------|-----------|
| F = Kraft              | in N      |
| s = Weg der Kraft      | in m      |

#### **Mechanische Leistung**

Will man angeben, in welcher Zeit eine bestimmte Arbeit verrichtet wird, so bedient man sich des Begriffes Mechanische Leistung P, d.h. die Leistung ist nicht nur von der Kraft und dem zurückgelegten Weg abhängig, sondern auch von der dazu benötigten Zeit.

Die Einheit der Mechanischen Leistung ist Nm/s = J/s = Watt (W).

$$P = \frac{W}{t} = \frac{F \bullet s}{t}$$

$$P = \text{Mechanische Leistung} \qquad \qquad \text{in } W = \text{Nm/s} = \text{J/s}$$

$$W = \text{Mechanische Arbeit} \qquad \qquad \text{in } \text{Nm} = \text{J}$$

$$F = \text{Kraft} \qquad \qquad \text{in } \text{N}$$

$$s = \text{Weg der Kraft} \qquad \qquad \text{in } \text{m}$$

$$t = \text{Zeit} \qquad \qquad \text{in } \text{s}$$

## **Pumpenleistung**

Bei der Pumpenleistung handelt es sich um eine mechanische Leistung. Um z. B. die (träge) Masse von einem Liter Wasser (= 1 kg entspricht einer Gewichtskraft von 9,81 N) in einer Sekunde um die Höhe von einem Meter zu heben, bedarf es der nachfolgenden Leistung.

$$P = \frac{W}{t} = \frac{F_{G} \cdot s}{t} = \frac{m \cdot g \cdot s}{t} z.B. \frac{1 kg \cdot 9,81 m / s^{2} \cdot 1 m}{1s} = 9,81 Nm / s = 9,81 W$$



#### Gesamtförderhöhe H

Druckverluste werden in zusätzliche Förderhöhe  $h_V$  umgerechnet (meist in m Wassersäule angegeben) und zu der geodätischen (tatsächlichen) Förderhöhe  $h_{geo}$  hinzuaddiert, wodurch sich die Gesamtförderhöhe H ergibt.

$$\begin{array}{lll} H &=& h_{geo} \; + \; h_v \\ \\ H &=& h_{geo} \; + \; h_V \\ \\ H &=& Gesamtf\"{o}rderh\"{o}he .......in m \\ \\ h_{geo} &=& geod\"{a}tische F\"{o}rderh\"{o}he .......in m \\ \\ h_V &=& zus\"{a}tzliche F\"{o}rderh\"{o}he durch Druckverluste ......in m \end{array}$$

Ersetzt man bei der obigen Formel jetzt noch den Weg s durch die Gesamtförderhöhe H, die durch den Pumpvorgang überwunden werden muss, so ergibt sich die folgende Formel zur Pumpenleistung

#### Pumpenwirkungsgrad

$$\eta = \frac{\text{abgegebene Leistung}}{\text{zugeführte Leistung}} = \frac{P_{ab}}{P_{zu}}$$
 
$$\eta = \text{Wirkungsgrad}$$
 
$$P_{ab} = \text{Leistung, die von der Pumpe abgegeben wird.....in W}$$
 
$$P_{zu} = \text{Leistung, die von der Pumpe aufgenommen wird .....in W}$$

## Gesamtwirkungsgrad

```
\eta_{\text{Ges}} \ = \ \eta_{\text{l}} \ \bullet \ \eta_{\text{l}} \ \bullet \ \eta_{\text{3}} \ \dots
```



#### **Elektrotechnik**

#### **Ohmsches Gesetz**

Je größer die Spannung und je kleiner der Widerstand, umso mehr Strom fließt.

$$I = \frac{U}{R}$$

## **Elektrische Leistung**

Die elektrische Leistung wird definiert als das Produkt aus der Spannung U und dem Strom I.

$$P = U \bullet I$$

P = elektrische Leistung ......in W [1 W = 1 VA]
U = elektrische Spannung.....in V
I = elektrische Stromstärke.....in A

#### **Elektrische Arbeit**

Die mechanische Arbeit unterscheidet sich von der mechanischen Leistung durch den Faktor Zeit, d. h. die mechanische Leistung ist gleich dem Quotienten aus mechanischer Arbeit und Zeit. Genauso verhält sich die elektrische Leistung zur elektrischen Arbeit:

$$W = P \bullet t$$

| W = elektrische Arbeit   | in Ws = VAs       |
|--------------------------|-------------------|
| P = elektrische Leistung | in W [1 W = 1 VA] |
| t = Zeit                 | in s              |

## Stromkosten

Die Leistung, die der elektrische Strom über eine bestimmte Einschaltzeit erbringt, ist die elektrische Arbeit. Diese wird am Stromzähler abgelesen.

$$K_A = W \bullet T$$





#### Wärmelehre

## Wärmemenge

Die spezifische Wärmekapazität c eines Stoffes gibt an, wie viel Energie (Kilojoule kJ) man braucht, um die Temperatur von 1 kg des betreffenden Stoffes um 1 K zu erhöhen. Erhöht ein Körper der Masse m seine Temperatur um den Betrag  $\Delta T$ , dann wird seine innere Energie um die Wärmemenge  $Q_W$  erhöht:

$$Q_{W} = c \bullet m \bullet \Delta T$$

| Qw | = Wärmemenge                                | in kJ |
|----|---------------------------------------------|-------|
| -  | = spezifische Wärmekapazität                |       |
|    | $c_{\text{Wasser}} = 4,19 \text{ kJ/(kgK)}$ |       |
| m  | = Masse des zu erwärmenden Körpers          | in kg |
| ΔΤ | = Temperaturunterschied                     | in K  |

## Wärmeenergiewirkungsgrad (z. B. einer Heizung)

$$\eta = \frac{\text{abgegebene Wärmemenge}}{\text{zugeführte Wärmemenge}} = \frac{Q_{ab}}{Q_{zu}} \text{ oder } \eta = \frac{\text{abgegebene Wärmeenergie}}{\text{zugeführte Wärmeenergie}} = \frac{W_{ab}}{W_{zu}}$$
 
$$\eta = \text{Wirkungsgrad}$$
 
$$Q_{ab} = \text{abgegeben Wärmemenge} \qquad \qquad \text{in kJ}$$
 
$$Q_{ab} = \text{zugeführte Wärmemenge} \qquad \qquad \text{in kJ}$$

 $Q_{ab}$  = abgegeben Wärmemenge ......in kJ  $Q_{zu}$  = zugeführte Wärmemenge .....in kJ  $W_{ab}$  = abgegeben Wärmeenergie ......in kJ  $W_{zu}$  = zugeführte Wärmeenergie ......in kJ

#### Gesamtwirkungsgrad

$$\eta_{\text{Ges}} \ = \ \eta_{\text{1}} \ \bullet \ \eta_{\text{1}} \ \bullet \ \eta_{\text{3}} \ \dots$$

## Brennstoffmengenermittlung für Warmwasserbereitung

Um die Brennstoffmenge bei der Warmwasserbereitung ermitteln zu können, ist neben der erforderlichen Wärmemenge und dem Wirkungsgrad der Heizanlage noch der Heizwert des verwendeten Brennstoffes notwendig.

#### Für gasförmige Brennstoffe

$$V_B \, = \frac{Q_W}{H_{uB} \, \bullet \, \eta}$$

 $V_B = Brennstoffvolumen (Gas) ......in m^3 \\ Q_W = Wärmemenge .......in kWh (1 kWh = 3.600 kJ) \\ H_{uB} = Heizwert des Brennstoffes ......in kWh/m^3 \\ \eta = Wirkungsgrad der Heizanlage$ 

Seite 14 © November 2019 BVS



#### Für flüssige und feste Brennstoffe

$$m_B = \frac{Q_W}{H_u \bullet \eta}$$

 $m_B$  = Brennstoffmasse (Öl, Kohle) ......in kg  $Q_W$  = Wärmemenge ......in kWh (1 kWh = 3.600 kJ)  $H_u$  = Heizwert für Öl oder Kohle ......in kWh/kg  $\eta$  = Wirkungsgrad der Heizanlage

## Heizkostenermittlung für die Warmwasserbereitung

Heizkosten = Brennstoffmenge • 
$$\frac{Preis}{Menge}$$

## Daraus folgt für gasförmige Brennstoffe

$$Hk = V_B \bullet E_P$$

 $\begin{aligned} \text{Hk} &= \text{Heizkosten} & & \text{in } \in \\ \text{V}_{\text{B}} &= \text{Brennstoffvolumen} & & \text{in } \text{m}^3 \\ \text{E}_{\text{P}} &= \text{Preis pro Brennstoffeinheit} & & \text{in } \notin/\text{m}^3 \end{aligned}$ 

## Daraus folgt für flüssige und feste Brennstoffe:

$$Hk = m_{\scriptscriptstyle B} \bullet E_{\scriptscriptstyle D}$$

Hk = Heizkosten  $in \in MB = Brennstoffmasse$  in kg  $E_P = Preis pro Brennstoffeinheit$   $in \notin /kg$ 

#### Mischwasserberechnungen

Werden zwei Stoffe mit unterschiedlichen Temperaturen vermischt, gleichen sich ihre Temperaturen aus. Man erhält eine Mischtemperatur. Der wärmere Stoff (enthält größere Wärmemenge) gibt seine Wärme an den kälteren Stoff (enthält kleinere Wärmemenge) ab. Die Gesamtwärmemenge muss aber aufgrund des Energieerhaltungssatzes erhalten bleiben.

Da c in jedem Term vorhanden, kann c herausgekürzt werden.

#### **Mischungsformel**

$$m_m \bullet T_m = m_k \bullet T_k + m_w \bullet T_w$$

 $\begin{array}{lll} T_m = Mischwassertemperatur & & & in \ ^{\circ}C \\ T_k = Kaltwassertemperatur & & & in \ ^{\circ}C \\ T_w = Warmwassertemperatur & & & in \ ^{\circ}C \\ m_m = Mischwassermenge & & & in \ kg \\ m_k = Kaltwassermenge & & & in \ kg \\ m_w = Warmwassermenge & & & in \ kg \\ m_w = Warmwassermenge & & & in \ kg \\ \end{array}$ 



## **Bäderspezifisches Fachrechnen**

#### Nennbelastung nach DIN 19643

Die Nennbelastung N (mittlere, stündliche Besucherbelastung) eines Beckens ist die Anzahl der Badenden, für die die jeweilige Beckenart (Nutzung) in einer Stunde Badebetriebszeit ausgelegt ist. Die Nennbelastung ergibt sich aus der Größe der Wasserfläche des jeweiligen Beckens, der Personen-Frequenz (n) und der Wasserfläche (a), die einer Person zur Verfügung stehen muss und die durch die jeweilige Beckennutzung vorgegeben wird (siehe Tab. 4 der DIN 19643 Teil 1).

$$N = \frac{A \bullet n}{a}$$

N = Nennbelastung.....in Pers/h

A = Beckenwasserfläche .....n m²

n = Personen-Frequenz.....in 1/h (solange kein anderer Wert angegeben ist)

a = Wasserfläche pro Person.....in m²/Pers

$$N = N_{SB} + N_{SDB} + N_{NSB}$$

N = Nennbelastung der gesamten Beckenanlage

N<sub>SB</sub> = Nennbelastung Schwimmerbecken

 $N_{SprB}$  = Nennbelastung Springerbecken

N<sub>NSB</sub> = Nennbelastung Nichtschwimmerbecken

#### Volumenstrom nach DIN 19643

Der Volumenstrom ist neben der Nennbelastung noch von den jeweils zum Einsatz kommenden Verfahrenstufen der Wasseraufbereitung und Desinfektion, der sogenannten Verfahrenskombination abhängig.

$$Q = \frac{N}{k}$$

Q = Aufbereitungs-Volumenstrom .....in m³/h

N = Nennbelastung .....in Pers/h

k = Belastbarkeitsfaktor.....in Pers/m³

 $k = 0.5 \text{ Pers/m}^3$  bei Verfahrenskombination ohne Ozonstufe

 $k = 0.6 \text{ Pers/m}^3 \text{ bei Verfahrenskombination mit Ozonstufe}$ 

 $k = 1,0 \text{ Pers/m}^3$  bei Verfahrenskombination mit Ultrafiltration

$$Q_{R} = q \bullet L$$

 $Q_B = Beckenvolumenstrom.....in m<sup>3</sup>/h$ q = 1,0 m<sup>3</sup>/h/m Rinnenlänge.....in m<sup>3</sup>/ph/m

L = Länge der Überlaufkante mind. 40 m.....in m



Seite 17

#### Umwälzperiode

Die Umwälzperiode tu ist die Zeit, in der der Beckeninhalt einmal umgewälzt wird.

$$t_u = \frac{V}{Q}$$

| t <sub>u</sub> = Umwälzperiode | in h, min |
|--------------------------------|-----------|
| V = Beckenvolumen              | in m³     |
| O = Volumenstrom               | in m³/h   |

## Mindestvolumen der Warmsprudelbecken in kombinierter Nutzung

Um eine Überlastung der Warmsprudelbecken in größeren Beckenanlagen zu vermeiden, muss bei einer Nennbelastung der Schwimmbeckenanlage > 50 Personen/Stunde für jeweils weitere 60 Personen/Stunde ein zusätzliches Warmsprudelbeckenvolumen von 1,2 m³ vorhanden sein.

$$V = V_{min} + \frac{N - 50 \frac{Pers}{h}}{60 \frac{Pers}{h}} \bullet 1, 2 m$$

 $V = Gesamtvolumen \ der \ Warmsprudelbecken ......in \ m^3$   $V_{min} = Mindestgesamtvolumen \ der \ Warmsprudelbecken = 4,0 \ m^3$   $N = Nennbelastung \ der \ Beckenanlage \ ......in \ Pers/h$ 

## Dosierleistung von Chlor sowie Chlorgasbedarfsberechnung

Die Dosierleistungen von Chlorgasdosiergeräten, die für Chlorungsanlagen nach DIN 19643 zur Verfügung stehen müssen sind für

Hallenbäder: 2 Gramm Chlor pro Kubikmeter Reinwasser

Freibäder: 10 Gramm Chlor pro Kubikmeter Reinwasser

So ist die erforderliche Mindestdosierleistung eines Chlorgasdosiergeräts zu ermitteln:

$$P_{C1} = Q \bullet k_{C1}$$

| P <sub>Cl</sub> = Erforderliche Chlorgasmenge        | .in | g/h oder kg/h |
|------------------------------------------------------|-----|---------------|
| Q = Volumenstrom                                     | .in | m³/h          |
| k <sub>Cl</sub> = spezifische Chlorgasdosierleistung | .in | g/m³          |

Der durchschnittliche Chlorverbrauch auf Grund der Nennbelastung berechnet sich wie folgt:

$$P_{Cl-N} = k_{Cl-N} \bullet N$$

 $\begin{array}{lll} P_{\text{CI-N}} = & \text{Chlorverbrauch bei Nennbelastung} & & & & & & & \\ & & & & & & & & \\ k_{\text{CI-N}} = & & \text{Chlorverbrauch pro Person} & & & & & & \\ N = & & & & & & & \\ N = & & & & & & \\ N = & & & & & & \\ N = & \\$ 



Die Anzahl der anzuschließenden Chlorgasbehälter richtet sich nach dem mittleren Chlorbedarf und der maximalen Entnahmemenge aus Flüssigchlorbehältern:

$$\rm n_{\rm cl} \ = \ \frac{P_{\rm cl} \ \bullet \ 100 \ h}{V_{\rm BCl}}$$

$$\begin{split} n_{\text{CI}} &= \text{Behälteranzahl} \\ P_{\text{CI}} &= \text{Chlorgasdosierleistung.....in g/h oder kg/h} \\ V_{\text{BCI}} &= \text{Flüssigchlorinhalt des Behälters ......in kg} \end{split}$$

Seite 18 © November 2019 BVS